

The Mechanism of the Nitration of Donor-Activated Benzenes with Nitric and Nitrous Acid as Studied by ¹⁵N CIDNP

Manfred Lehnig

Fachbereich Chemie, Universität Dortmund, D-44221 Dortmund, Germany

Received 2 December 1998; revised 27 January 1999; accepted 2 February 1999

Abstract: ¹⁵N CIDNP effects observed during nitration of phenolic compounds with nitric and nitrous acid are comparable showing that nitrous acid is not only a catalyst during nitration with nitric acid but also a reactive intermediate. The ¹⁵N CIDNP effects are generated in radical pairs formed during encounters of NO₂ and arene radical cations or aroxyl radicals. The mechanism given is valid for arenes more reactive than toluene. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Nitration, Electron transfer, Nitrogen oxides, Radicals and radical reactions

The nitration of activated arenes with nitric acid has been thoroughly studied during the past [1]. Nevertheless, the mechanism is not clear in all details.

$$ArH + HNO_3 \rightarrow ArNO_2 + H_2O$$
1-4
5-8

1: Phenol4:1,2-Dimethoxybenzene7a,b: o-, p-Nitroanisole2: p-Fluorophenol5a,b: o-, p-Nitrophenol8:1,2-Dimethoxy-4-nitrobenzene3: Anisole6:2-Nitro-4-fluorophenol9:4-Fluoro-4-nitrocyclohexadien-1-one

Martinsen and Ingold and coworkers found that the nitration of 1 and 3 is catalyzed by nitrous acid which is formed during the reaction [2,3]. Ridd and coworkers proved the radical character of the product formation using ¹⁵N CIDNP for arenes more reactive than toluene [4,5].

$$ArH^{+} + NO_{2} \rightarrow ArNO_{2} + H^{+}$$
 (2)

The detailed effect of nitrous acid has not been specified. In the meantime, nitration reactions of p-substituted phenols with NO₂ in water and with HNO₂ in trifluoroacetic acid have been studied [6,7]. It will be shown in the following that the mechanism given for the nitration reactions with NO₂ and HNO₂ is generally valid for the nitration of donor-activated benzenes with nitric acid. For proving this, nitration reactions of 2 and 4 with NaNO₃, HNO₃ and NaNO₂ are compared. 2 and 4 have been chosen, as they give only 6 and 8 as stable nitration products, whereas 1 and 3 lead not only to nitration products 5a,b and 7a,b, but also to a lot of side products.

¹⁵N NMR spectra taken during and after the reaction of **2** with ¹⁵N enriched NaNO₃ in acetic acid are given in Figure 1. During the reaction, the ¹⁵N NMR signals at $\delta = 1.6$, 7.9 and 6.4 ppm appear in emission for 847 min. They are assigned to **6** and the unstable intermediate **9** [8]. The ¹⁵N NMR signals at $\delta = 3.2$ and 204.2 ppm are due to ¹⁵NO₃⁻ and ¹⁵NO₂⁻. They are not polarised. ¹⁵NO₃⁻ disappears according to the progress of the reaction; ¹⁵NO₂⁻ is formed as an intermediate. The time dependency of the NMR signals of **6** and ¹⁵NO₃⁻ is given in Table 1. An enhancement factor E = -1202 has been determined from the data, which quantitatively describes the CIDNP effect [9,10], see Table 2. During the reaction of **2** with Na¹⁵NO₂, similar ¹⁵N NMR spectra are observed, and the duration of the emission in the ¹⁵N NMR signal of **6** is comparable (804 min).

The reaction of 4 with $H^{15}NO_3$ in acetic acid has been described [10]. The ¹⁵N NMR signal of 8 appears in emission for 39 min with E = -962. Using Na¹⁵NO₂, no reaction takes place. After adding 8 % H_2SO_4 to the reaction mixture, the emission of 8 is observable for 33 min, E = -770.

The duration of the reactions of 2 and 4 with NaNO₃ and HNO₃ and with NaNO₂ is comparable, and the magnitudes of the ¹⁵N CIDNP effects are similar indicating identic mechanisms for the nitration with nitrous and nitric acid.

$$H^+ + NO_2^- \Rightarrow HNO_2$$
 (3)

$$HNO_2 + NO_3^- + H^+ \rightleftharpoons 2 NO_2^- + H_2O$$
 (4)

$$2 \quad HNO_2 \qquad \rightleftharpoons \quad NO' + \quad NO_2' + \quad H_2O \qquad (5)$$

$$NO_2$$
 + ArH \rightarrow NO_2 + ArH⁺. (6)

$$ArH + HNO_2 \rightarrow ArH^{\dagger} + NO^{\cdot} + OH^{-}$$
 (7)

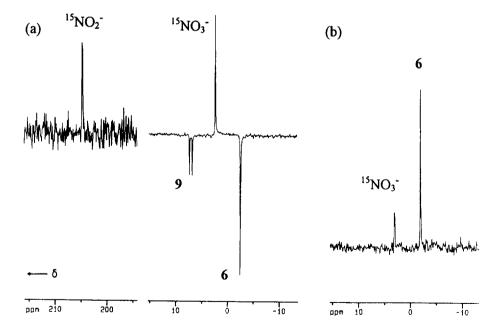


Figure 1. ¹⁵N NMR spectra, taken (a) with 176 pulses 313-847 min., (b) with 10 pulses 2880-2930 min. after starting the reaction of 2 with Na¹⁵NO₃ in acetic acid/ D₂O₂ δ values against nitrobenzene-¹⁵N.

Table 1. ¹⁵N NMR signal intensities I^[a] of 6, 8 and ¹⁵NO₃ at 300 K during the reaction of (a) 2 (0.2 M) with NaNO₃ (0.1 M), (b) 2 (0.2 M) with NaNO₂ (0.3 M), (c) 4 (0.2 M) with NaNO₂ (0.1 M) with H₂SO₄ (8%) in acetic acid with 10% D₂O as lock, NaNO₃ 64% atom % ¹⁵N, NaNO₂ 99.3% atom % ¹⁵N.

	<i>t</i> ^[b]	3	6	12 ^[c]	100	106	282	286	313 ^[d]	847 ^[e]	2880 ^[f]	14400 ^[8]
	<i>I</i> (6)	-8	-13	-16	-20	-16	-13	-1	-2.6	0	3.8	5.9
	I(15NO ₃ -)	2	3	4.2	5	4	5	3	2.8	2	0.9	0
(b)						•						
	<i>t</i> ^[b]	3	6	9	12	18	79	132	180	283 ^[h]	806 ^[i]	14400 ^[j]
			-140	-100	-83	-77	-40	-25	-14	-2.2	0	15
	I(15NO ₃ -)	5	6	8	8	9	6	4	3	4	3	0
(c)												
	<i>t</i> ^[b]	2	4	7	10	14	18	21	25	29	33	120
	<i>I</i> (8)	-600	-550	-200	-80	-40	-18	-9	-5	-2	0	9

^[a] I: Relative NMR intensities determined from the signal-to-noise ratios after single 90° pulses. ^[b] I: Time after mixing the reactants (min). - ^[c] Average values from 28 pulses. - ^[d] Average values from 176 pulses. - ^[c] 23% nitration product. - ^[f] Average values from 10 pulses. - ^[g] After adding a single drop of H₂SO₄; average values from 9 pulses, 42% nitration product. - ^[h] Average values from 175 pulses. - ^[i] 41% nitration product. - ^[j] 88% nitration product.

According to eq 4, NO_3^- is in equilibrium with HNO_2 und NO_2^- [11]. On the other hand, HNO_2 decomposes to NO_2^- und NO_3^- eq 5 [12], and oxidizes the arenes following eq 8. Phenolic compounds might also be oxidized by NO_2^- (eq 6) [7,13]. However, the oxidation potential of NO_2^- ($E_{ox} = 0.9 - 1.0 \text{ V}$) [14] is not high enough to oxidize 4 ($E_{ox} = 1.4 \text{ V}$) [15]. 6^{+} should be deprotonated in weakly acid medium [16]. The product yields are higher than expected from eqs 3 - 7, because NO_2^- is partially oxidized by O_2^- giving NO_2^- which takes part in the nitration.

By using the radical pair theory, enhancement factors have been calculated giving E_{calc} =-1222 for 6 and E_{calc} = -1296 for 8. They are comparable with the measured E values indicating that the radical reaction is the main reaction under the applied reaction conditions. Non-radical reactions like a nitrosation followed by oxidation or an electrophilic substitution with NO₂⁺ are of no importance. It is concluded that nitrations of donor-activated arenes with nitric acid follow the radical reaction scheme if the reactions occur in weakly acid media.

Reaction system	¹⁵ N NMR parameters	t _{max} [a]	<i>t_E</i> ^[b]	E, E_{calc}
2 with Na ¹⁵ NO ₃ in	$T_I = 1.6 \text{ min}$	100	847	$E(6) = -1202^{[c]}$
acetic acid	$I_o = 3.2$			E_{calc} (6) = -1222 ^[d]
2 with Na ¹⁵ NO ₂ in	$T_I = 1.6 \text{ min}$	8	806	$E(6) = -1090^{[c]}$
acetic acid	$I_o = 7$			E_{calc} (6) = -1222 ^[d]
4 with H ¹⁵ NO ₃ in acetic acid [10]	$T_1 = 35 \text{ s}$	6	39	E (8) = - 962 E_{calc} (8) = - 1296
4 with Na ¹⁵ NO ₂ in	$T_I = 35 \text{ s}$	2	33	$E(8) = -770^{[c]}$
acetic acid/H ₂ SO ₄	$I_o = 9$			$E_{calc}(8) = -1296[10]$

Table 2. Experimental enhancement factors E in 6 and 8 and calculated ones E_{calc} .

Acknowledgment. The financial support by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft is greatly acknowledged.

References

- G.A.Olah, R.Malhotra, S.C.Narang, Nitration, VCH, Weinheim, 1989; K.Schofield, Aromatic Nitration, Cambridge University Press, Cambridge, 1980.
- [2] H.Martinsen, Z.Phys. Chem. 1904, 50, 385.
- [3] C.A.Bunton, E.D.Hughes, C.K.Ingold, D.I.H.Jacobs, M.H.Jones, G.J.Minkoff, R.I.Reed, J.Chem.Soc. 1950, 2628.
- [4] J.C. Giffney, J.H.Ridd, J.Chem.Soc., Perkin Trans. 2 1979, 618.
- [5] J.H.Ridd, Chem. Soc. Rev. 1991, 20, 149; J.H.Ridd, Acta Chem. Scand. 1998, 52, 11.
- [6] W.A.Prütz, Z.Naturforsch. 1984, 39c, 725.
- [7] B.D.Beake, J.Constantine, R.B.Moodie, J.Chem.Soc., Perkin Trans. 2 1992, 1653; B.D.Beake, R.B.Moodie, J.Chem.Soc., Perkin Trans. 2 1998, 1.
- [8] J.H.Ridd, S.Trevellick, J.P.B.Sandall, J.Chem.Soc., Perkin Trans. 2 1992, 573.
- [9] J.Bargon, H.Fischer, Z.Naturforsch. 1967, 22a, 156; G.L.Closs, C.E.Doubleday, D.R.Paulson, J.Am.Chem.Soc. 1970, 92, 2185.
- [10] M.Lehnig, J.Chem.Soc., Perkin Trans. 2 1996, 1943; M.Lehnig, Acta Chem.Scand. 1997, 51, 211;
 M.Lehnig, K.Schürmann, Eur.J.Org.Chem. 1998, 913.
- [11] K. Vetter, Z. Anorg. Chem. 1949, 260, 242.
- [12] S.E.Schwartz, W.H.White, Adv. Environ. Sci. Technol. 1983, 12, 1.
- [13] R.G.Coombes, A.W.Diggle, S.P.Kempsell, Tetrahedron Lett. 1993, 34, 8557.
- [14] L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin, 1987.
- [15] R.Rathore, E.Bosch, J.K.Kochi, Tetrahedron 1994, 50, 6727.
- [16] W.T.Dixon, J.Murphy, J.Chem.Soc., Faraday Trans. 2 1976, 72, 1221; D.M.Holton, D.Murphy, J.Chem.Soc., Faraday Trans. 2 1979, 75, 1637.
- [17] J.B.Pedersen, J.Chem.Phys. 1977, 67, 4079.

 t_{max} : Time of maximal emission after mixing the reactants (min) - t_{E} : Duration of the emission (min) - t_{E} : Determined following $E = \sum I_i \Delta t(i,i+1)/I_0T_I$ with I_i : signal intensities during the i^{th} measurement, $\Delta t(i,i+1)$: time intervals between the i^{th} and the $(i+1)^{th}$ measurement, I_0 : yield at I_E (see Table 1), I_I : nuclear relaxation time determined after the reaction. The summation occurs during I_{E} : - I^{th} Determined following Pedersen's treatment of the radical pair theory [17] and parameters taken from [10], I_{E} : I^{th} and I_{E} : - I^{th} and I^{th} and I^{th} are reactants (min) - I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} are reactants (min) - I^{th} and I^{th} are reactants (min) - I^{th} are reactants (min) - I^{th} and I^{th} a